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Abstract—An iterative method for the synthesis of C2–C4 0 linked poly-oxazoles has been developed. This efficient two-step repet-
itive process includes TBS–iodine exchange reaction and Suzuki–Miyaura cross-coupling reaction with oxazolylboronate 8, which
allows appending a bis-oxazole moiety per each iteration. The synthesis of bis-, tris-, tetrakis-, pentakis-, and hexakis-oxazoles (10,
14, 22, 18, and 24) was achieved starting from the common intermediate 7 in 1–5 steps.
� 2007 Elsevier Ltd. All rights reserved.
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Figure 1. Natural products containing C2–C40 linked poly-oxazole
moiety.
In the last two decades, various natural products con-
taining C2–C4 0 linked poly-oxazole moieties such as
telomestatin (1),1,2 and ulapualide A (2)3–5 (Fig. 1) have
been isolated and reported to possess a wide variety of
biological activities.6 For the purpose of preparation
of these successive C2–C4 0 linked poly-oxazole subunits,
a large number of iterative methods have been devel-
oped,7 which are classified as the following types: (i)
Hantzsch-type synthesis,5c (ii) formation and oxidation
of oxazolines,2e,4a,e,8 (iii) cyclodehydration,9 (iv) Rh(II)
catalyzed cycloaddition reaction,10 (v) Chan-type rear-
rangement,11 (vi) cyclization of alkynyl derivatives,12

(vii) photolysis or pyrolysis of N-acylisoxazol-5-ones,13

(viii) Pummerer rearrangement,14 (ix) ring enlargement
of N-acylazirizines,15 and (x) SNAr substitution with
TosMIC anion.16

Meanwhile, Suzuki–Miyaura cross-coupling reaction
using boronic acid derivatives has played an important
role for biaryl synthesis due to their easy availability,
low toxicity, air stability, and wide functional-group tol-
erance.17 In the area of oligophenylenes several iterative
two-step cross-coupling-activation methodologies
including Suzuki–Miyaura reaction were disclosed to
prepare functionalized oligophenylenes.18 In terms of
0040-4039/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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poly-oxazole synthesis, we could find out only one pat-
ent relevant to the iterative synthesis including Suzuki–
Miyaura cross-coupling using oxazol-2-ylboronic acid.19

In addition, few examples of the preparation and
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Scheme 2. Synthesis of oxazolylboronate 8 and bis-oxazoles (9 and
10).
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cross-coupling reaction of oxazolylboronates have been
reported to date.20

Recently, we initiated the project toward the synthesis of
natural products containing poly-oxazole systems such
as telomestatin (1) and ulapualide (2) with an iterative
manner including Suzuki–Miyaura cross-coupling reac-
tion of oxazolylboronates and we communicated the
first example of the synthesis and cross-coupling reac-
tion of oxazol-4-ylboronates.21 In this literature, we
wish to describe our efficient and repetitive two-step
poly-oxazole synthesis using oxazol-4-ylboronates to
be able to access natural products including C2–C4 0

linked poly-oxazole system based on our preliminary
results.22

Our strategy for poly-oxazole synthesis is outlined in
Scheme 1. We envisaged that our repetitive procedure
would involve halogenation at C2 position in 2-TBS-
oxazole I, followed by Suzuki–Miyaura cross-coupling
reaction of the resulting 2-halooxazole II with oxazol-
4-ylboronate III to afford the corresponding poly-oxa-
zole IV incorporating an additional bis-oxazole ring.
The resulting 2-TBS-polyoxazole IV will serve as a pre-
cursor for the next iterative operation.23 Since this pro-
cedure will allow appending a bis-oxazole moiety per
each iterative cycle, we expected to obtain both odd-
and even-numbered poly-oxazoles starting from mono-
oxazole I (n = 1) and bis-oxazole I (n = 2), respectively.

As shown in Scheme 2, we initially pursued the synthesis
of oxazolylboronate 8 (=III) and bis-oxazole 9 [=I
(n = 2)]. Our synthesis commenced with exposure of
the known 2-bromooxazole 324 to aqueous ammonia
in THF at ambient temperature for 24 h to give an
80% yield of the corresponding carboxamide 4. Taking
advantage of Sheehan–Smith’s method,25 4 was then
converted to bis-oxazole 6 in moderate yield (30%) over
4 steps involving (1) acylisocyanate formation with oxa-
lyl dichloride, (2) diazomethane induced oxazolone for-
mation, (3) triflation with triflic anhydride,25b,26 and (4)
removal of bromine atom at C2 0 position in the resulting
bromide 527 by use of zinc powder in acetic acid. Careful
treatment of 6 with 1.1 equiv of lithium hexamethyldisil-
azide (LiHMDS) in THF at �78 �C, followed by addi-
tion of tert-butyldimethylsilyl trifluoromethanesulfonate
(TBSOTf) at the same temperature produced 2 0-TBS-
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Scheme 1. Our iterative method for poly-oxazole synthesis.
oxazole 7 as a common precursor for 8 and 9 in 77%
yield.28 The desired oxazol-4-ylboronate 8 (=III) was
obtained in 42% yield by borylation of 7 under Ishi-
yama–Miyaura condition [2.5 mol % Pd2(dba)3ÆCHCl3,
15 mol % PCy3, 2 equiv of bis(pinacolato)diboron
(pinB-Bpin) and 3 equiv of KOAc in refluxing diox-
ane].28,29 On the other hand, carboethoxylation30 of tri-
flate 7 was carried out by treatment with 5 mol %
Pd(PPh3)4 in the presence of large excess of ethanol
and 2 equiv of triethylamine under carbon monoxide
in DMF at 100 �C to give the expected bis-oxazole 9
in 99% yield.

Succeeded in the synthesis of 8 and 9, we turned our
attention to the establishment of the new iterative meth-
odology for poly-oxazole synthesis as depicted in
Scheme 3. At first, we investigated the synthesis of the
odd-numbered poly-oxazoles starting from the known
mono-oxazole 11.24 In our previous paper,21 we re-
ported Suzuki–Miyaura coupling of oxazol-4-ylboro-
nates with various aryl halides under normal reaction
condition [Pd(PPh3)4, K2CO3] provided the correspond-
ing oxazole derivatives in high yield. Upon this condi-
tion, the reaction between 8 and 11 proceeded
smoothly to furnish the desired tris-oxazole 13 in 84%
yield. Then, the second iterative cycle to obtain penta-
kis-oxazole was executed as follows. The expected
TBS–iodine exchange reaction of 13 was carried out in
the presence of TBAF (tetra-n-butylammonium fluo-
ride) and iodine, resulting in the formation of the corre-
sponding iodide 15 in 75% yield. The key cross-coupling
reaction of 15 with 8 was best achieved under improved
reaction condition [Pd2(dba)3ÆCHCl3, P(o-tolyl)3,
K2CO3] to furnish pentakis-oxazole 17 in 31% yield.
Next, the synthesis of the even-numbered poly-oxazoles
was examined in the same fashion. Starting from bis-
oxazole 9, the first iterative cycle was performed by
TBS–iodine exchange reaction (64%), followed by Suzu-
ki–Miyaura cross-coupling reaction of the resulting bis-
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Scheme 3. Synthesis of bis-, tris-, tetrakis-, pentakis-, and hexakis-oxazoles.
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oxazole 19 with 8 to provide tetrakis-oxazole 21 in 64%
yield. To append the further bis-oxazole moiety, the sec-
ond iterative cycle was repeated from 21, however, only
trace amount of hexakis-oxazole 23 was obtained.

At that moment, we realized that as the number of poly-
oxazoles increased, the yield of the cross-coupling reac-
tion decreased. Since this serious problem was attributed
to the low solubility of the longer poly-oxazoles in or-
ganic solvents, we decided to modify the ester part of
the poly-oxazoles. After several investigations, we found
out that the corresponding solketal esters showed rela-
tively better solubility. Using solketal esters (12 and
10) as starting materials, the iterative process was again
investigated.31 For the odd-numbered poly-oxazoles, the
synthesis commenced from solketal ester 12, prepared
from 11 via a three-step sequence [(a) 2 M NaOH,
THF, rt. (b) (COCl)2, DMF (cat.), CH2Cl2, rt. (c) Sol-
ketal, Et3N, CH2Cl2, 79% in 3 steps]. Suzuki–Miyaura
cross-coupling reaction of mono-oxazole 12 with 8 pro-
vided tris-oxazole 14 in 75% yield. Next, the second iter-
ative process was performed, giving rise to iodide 16
(80%), then pentakis-oxazole 18 in better yield (63%).
Since pentakis-oxazole 18 is an equivalent to the
DEFGH-ring part in telomestatin (1), it is regarded as
an important synthetic intermediate for the synthesis
of 1. The preparation of the even-numbered poly-oxaz-
oles was initiated from bis-oxazole 10, which was pre-
pared by carboalkoxylation of 7 in 63% (Scheme 2).
Compound 10 was treated with iodine in the presence
of TBAF to produce the corresponding iodide 20 in
77% yield. Suzuki–Miyaura coupling reaction of 20 with
8 gave rise to tetrakis-oxazole 22 in 69% yield. The sec-
ond iterative cycle from 22 through the same manner
provided hexakis-oxazole 24 in improved yield (43%)
over 2 steps.

Pattenden disclosed the convergent synthesis of tris-oxa-
zole 25 through an iterative step-wise oxazoline forma-
tion–oxidation sequence and they achieved the
synthesis of a diastereomer of ulapualide A (2) from
25.4e,f As shown in Scheme 4, we demonstrated the prep-
aration of Pattenden’s key intermediate 25 from tris-
oxazole 15. To install methyl group at C200 position in
15, subjection of 15 to Gray’s condition [Pd(PPh3)4,
trimethylboroxine]32 produced a 60% yield of tris-oxa-
zole 25. The spectroscopic properties (1H and 13C
NMR) of the synthetic tris-oxazole 25 were compatible
with those in the literature.4e

In summary, we have succeeded in the development of
the two-step iterative method for C2–C4 0 linked poly-
oxazole synthesis including TBS–iodine exchange reac-
tion and Suzuki–Miyaura cross-coupling reaction. Our
developed process allows to extend a bis-oxazole moiety
per each iteration. Taking advantage of this method,
bis-, tris-, tetrakis- pentakis-, and hexakis-oxazoles were
synthesized in 1, 2, 3, 4, and 5 steps, respectively, from
the common intermediate bis-oxazole 7. Applying this
method, the total synthesis of natural products includ-
ing poly-oxazole moiety is currently in progress, which
will be discussed in due course.
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HIFABMS m/z calcd for C25H31N4O8Si ([M+H]+),
543.1911; found, 543.1917. Pentakis-oxazole 18: Mp
271–272 �C; 1H NMR (500 MHz, CDCl3) d 0.41 (6H, s),
1.01 (9H, s), 1.39 (3H, s), 1.46 (3H, s), 3.86 (1H, dd,
J = 5.7, 8.6 Hz), 4.15 (1H, dd, J = 6.3, 8.6 Hz), 3.39 (1H,
dd, J = 5.8, 11.2 Hz), 4.44 (1H, dd, J = 4.6, 11.2 Hz), 4.47
(1H, m), 8.36 (1H, s), 8.46 (2H, s), 8.46 (1H, s), 8.55 (1H,
s); 13C NMR (125 MHz, CDCl3) d �6.37 (2 carbons),
16.8, 25.4, 26.1 (3 carbons), 26.8, 65.5, 66.4, 73.5, 110.0,
129.8, 130.7, 130.9, 130.9, 134.1, 139.3, 139.4,139.6, 142.1,
144.1, 155.5, 155.9, 156.1, 156.9, 160.6, 171.7; HIFABMS
m/z calcd for C28H32N5O9Si ([M+H]+), 610.1969; found,
610.1973. Hexakis-oxazole 24: Mp > 300 �C; 1H NMR
(500 MHz, CDCl3) d 0.42 (6H, s), 1.01 (9H, s), 1.39 (3H,
s), 1.46 (3H, s), 3.85 (1H, dd, J = 5.7, 8.6 Hz), 4.15 (1H,
dd, J = 6.3, 8.6 Hz), 4.39 (1H, dd, J = 5.9, 11.2 Hz), 4.43
(1H, dd, J = 4.7, 11.2 Hz), 4.46 (1H, m), 8.35 (1H, s), 8.45
(1H, s), 8.45 (1H, s), 8.46 (1H, s), 8.47 (1H, s), 8.55 (1H, s);
13C NMR (125 MHz, CDCl3) d �6.36 (2 carbons), 16.8,
25.4, 26.1 (3 carbons), 26.8, 65.5, 66.4, 73.5, 110.0, 129.8,
130.7, 131.0, 131.0, 131.01, 134.2, 139.3, 139.5, 139.5,
139.6, 142.1, 144.1, 155.5, 155.9, 156.0, 156.2, 157.0, 160.6,
171.8; HIFABMS m/z calcd for C31H33N6O10Si
([M+H]+), 677.2028; found, 677.2044.
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